Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


Surrogate (version 2.0)

plot SPF BinCont: Plots the surrogate predictive function (SPF) in the binary-continuous setting.

Description

Plots the surrogate predictive function (SPF) based on sensitivity-analyis, i.e., P(ΔT|ΔSI[ab]), in the setting where S is continuous and T is a binary endpoint.

Usage

# S3 method for SPF.BinCont
plot(x, Type="Frequency", Col="grey", Main, Xlab=TRUE, ...)

Arguments

x

A fitted object of class SPF.BinCont. See ICA.BinCont.

Type

The type of plot that is requested. The argument Type="Frequency" requests histograms for P(ΔT|ΔSI[ab]). The argument Type="Percentage" requests relative frequenties for P(ΔT|ΔSI[ab]). The argument Type="Most.Likely.DeltaT" requests a histogram of the most likely ΔT values. For example, when in one run of the sensitivity analysis, P(ΔT=1|ΔSI[ab])=.6, P(ΔT=0|ΔSI[ab])=.3, and P(ΔT=1|ΔSI[ab])=.1, the most likely outcome in this run would be P(ΔT=1. The argument Type="Most.Likely.DeltaT" generates a plot with percentages for the most likely P(ΔT) value across all obtained values in the sensitivity analysis.

Col

The color of the bins or lines when histograms or density plots are requested. Default "grey".

Main

The title of the plot.

Xlab

Logical. Should labels on the X-axis be shown? Default Xlab=TRUE.

Arguments to be passed to the plot, histogram, ... functions.

References

Alonso, A., Van der Elst, W., Molenberghs, G., & Verbeke, G. (2017). Assessing the predictive value of a continuous surogate for a binary true endpoint based on causal inference.

See Also

SPF.BinCont

Examples

Run this code
# NOT RUN {
 # time consuming code part
data(Schizo_BinCont)
# Use ICA.BinCont to examine surrogacy
Result_BinCont <- ICA.BinCont(M = 1000, Dataset = Schizo_BinCont,
Surr = PANSS, True = CGI_Bin, Treat=Treat, Diff.Sigma=TRUE)

# Obtain SPF
Fit <- SPF.BinCont(x=Result_BinCont, a = -30, b = -3)

# examine results
summary(Fit1)
plot(Fit1)

plot(Fit1, Type="Most.Likely.DeltaT")
# }

Run the code above in your browser using DataLab