
Last chance! 50% off unlimited learning
Sale ends in
Plots the surrogate predictive function (SPF) based on sensitivity-analyis, i.e.,
# S3 method for SPF.BinCont
plot(x, Type="Frequency", Col="grey", Main, Xlab=TRUE, ...)
A fitted object of class SPF.BinCont
. See ICA.BinCont
.
The type of plot that is requested. The argument Type="Frequency"
requests histograms for Type="Percentage"
requests relative frequenties for Type="Most.Likely.DeltaT"
requests a histogram of the most likely Type="Most.Likely.DeltaT"
generates a plot with percentages for the most likely
The color of the bins or lines when histograms or density plots are requested. Default "grey"
.
The title of the plot.
Logical. Should labels on the X-axis be shown? Default Xlab=TRUE
.
Arguments to be passed to the plot, histogram, ... functions.
Alonso, A., Van der Elst, W., Molenberghs, G., & Verbeke, G. (2017). Assessing the predictive value of a continuous surogate for a binary true endpoint based on causal inference.
# NOT RUN {
# time consuming code part
data(Schizo_BinCont)
# Use ICA.BinCont to examine surrogacy
Result_BinCont <- ICA.BinCont(M = 1000, Dataset = Schizo_BinCont,
Surr = PANSS, True = CGI_Bin, Treat=Treat, Diff.Sigma=TRUE)
# Obtain SPF
Fit <- SPF.BinCont(x=Result_BinCont, a = -30, b = -3)
# examine results
summary(Fit1)
plot(Fit1)
plot(Fit1, Type="Most.Likely.DeltaT")
# }
Run the code above in your browser using DataLab